Robust Bayesian Inference for Seemingly Unrelated Regressions with Elliptical Errors

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seemingly Unrelated Regressions

This article considers the seemingly unrelated regression (SUR) model first analyzed by Zellner (1962). We describe estimators used in the basic model as well as recent extensions.

متن کامل

Bayesian modelling of multivariate quantitative traits using seemingly unrelated regressions.

We investigate a Bayesian approach to modelling the statistical association between markers at multiple loci and multivariate quantitative traits. In particular, we describe the use of Bayesian Seemingly Unrelated Regressions (SUR) whereby genotypes at the different loci are allowed to have non-simultaneous effects on the phenotypes considered with residuals from each regression assumed correla...

متن کامل

Bayesian Geoadditive Seemingly Unrelated Regression

Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covaria...

متن کامل

Estimation of Seemingly Unrelated Tobit Regressions via the EM Algorithm

In this article we consider the estimation of two seemingly unrelated Tobit regressions in which the dependent variables are truncated normal. The model is useful, since it can be viewed as the reduced form of a simultaneous-equations Tobit model. The proposed estimation method and algorithm are interesting in themselves for the following reasons. In the estimation of a simultaneous equations m...

متن کامل

Bayesian Geoadditive Seemingly Unrelated Regression 1

Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covaria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2002

ISSN: 0047-259X

DOI: 10.1006/jmva.2001.2054